FATA MORGANA V2

 

........3..1..56...9..4..7......9.5.7.......8.5.4.2....8..2..9...35..1..6........

fata morgana tarx0001

 

That new version follows the same general strategy, but copies some ideas of a solution found by “abi” a French player through a special loop and makes more eliminations within the floors 136

 

To make it shorter in other examples, I’ll name that loop “abi” loop

 

The loop shown has good chances to be found in other exocet or nearly exocet patterns.

It has been developed first by ‘abi’ on Platinum Blonde. Platinum Blonde is very close to an exocet, but is not one.

 

X    6+   6+   |16+  16+  16+  |X    1+   X 

3+   3+   X    |3+   3+   X    |X    X    X  

3+   X    6+   |136+ X    136+ |X    X    1+  

 

13+  136+ 6+   |136+ 136+ X    |3+   X    16+

X    136+ 6+   |136  X    136  |3+   136+ X 

13+  X    6+   |X    136+ X    |3+   136  16+

 

1+   X    X    |136+ X    136+ |3+   X    6+  

X    X    X    |X    6+   6+   |X    6+   6+  

X    1+   X    |13+  13+  13+  |3+   3+   X 

 

In that reduced PM, the exocet is shown in blue. The potential of eliminations just using floors 136 is shown in red.

 

We have 3 scenarios for r5c46: 13r5c46  16r5c46  36r5c46. Only one is valid

 

One can see that elimination of 13r5c46 and 16r5c46 does not appear here.

To achieve such elimination, we need the UR potential.

 

We have to key UR’s linked to the scenarios

 

r3c46+r5c46

r5c46+r7c46

 

We study the scenario 13c46

 

 Then, to avoid the UR pattern, we must have

 1r3c9 | 3r3c1

 1r7c1 | 3r7c7  These are strong inferences

 

 We must also have (due to exocet 13r4c2 13r6c8 ) 

 1r9c2 | 3r2c2  (induced ALS)

 1r1c8 | 3r9c8  (induced ALS)   strong inferences as well

 

 Giving the loop (within the scenario) (this is the “abi” loop)

 

 1r7c1 - 1r9c2 = 3r2c2 — 3r3c1 = 1r3c9 — 1r1c8 = 3r9c8 - 3r7c7 = 1r7c1

 

 Due to the loop (still within the scenario)

 

 3r2c2 3r9c8 => 3r46c5 - 13r5c46 or

 1r9c2 1r1c8 => 1r46c5 - 16r5c46

 

 <13>r5c46

 

We study the scenario 13c46

 

 

 We have a similar “abi” loop

 

 1r7c1 - 1r9c2 = 6r1c2 — 6r3c3 = 1r3c9 — 1r1c8 = 6r8c8 - 6r7c9 = 1r7c1

 

 And a similar conflict

 

 6r1c2 6r8c8 => 6r46c5 - 16r5c46 

 1r9c2 1r1c8 => 1r46c5 - 16r5c46

 <16>r5c46

 

So we have 36r5c46

 

============================

 

This is a very common pattern when an exocet does exists, but it can be found as well with patterns close to an exocet. ‘abi’ showed it in platinum blonde in a slightly different presentation

 

I’ll use as much as possible ‘abi’s preferred way to show the loop

Here for the first case

 

 1r3c9          3r3c1

       1r9c2    3r2c2  

       1r7c1           3r7c7  

 1r1c8                 3r9c8  

 

In rows we have the strong inferences

In columns we have the conflicts

In blue odd positions in the loop (starting in 1r3c9)

In red the even positions

===========================================

 

The new reduced PM with exocet eliminations from 36r5c46

 

X    6+   6+   |16+  16+  16+  |X    1+   X 

3+   3+   X    |3+   3+   X    |X    X    X  

3+   X    6+   |136+ X    136+ |X    X    1+  

 

13+  36   6+   |1+   1+   X    |x    X    1+

X    1+   x    |36   X    36   |x    1+   X 

1+   X    x    |X    1+   X    |3+   36   16+

 

1+   X    X    |136+ X    136+ |3+   X    6+  

X    X    X    |X    6+   6+   |X    6+   6+  

X    1+   X    |13+  13+  13+  |3+   3+   X 

 

We still have some potential eliminations.

 

But we have 2 small loops with the same basis as before

 

6r3c3 - 6r1c2 = 3r2c2 - 3r3c1 = 6r3c3  => <3>r2c1 <6>r1c3

3r8c7 - 3r9c8 = 6r8c8 - 6r8c7 = 3r8c7  => <3>r9c7 <6>r8c9

 

The last red candidates are cleared through these 2 loops

 

3r2c5 -  3r2c2 = 3r4c2 – 3r6c8 = 3r9c8 – 3r9c5 = 3r2c5

6r8c5 -  6r8c8 = 6r6c8 – 6r4c2 = 6r1c2 – 6r1c5 = 6r8c5

 

 

2458  2467  24578 |12789 16789 178  |24589  1248  3    

248  2347  1      |23789  3789  5     |6      248   249  

2358  9     2568   |12368  4     1368  |258    7     125  

----------------------------------------------------------

12348 36    2468   |178    178   9     |247   5     1247

7     124   249   |36    5     36   |249  124   8    

189  5     89    |4      178   2     |379    36    1679 

----------------------------------------------------------

145   8     457    |1367   2     13467 |3457   9     4567 

249   247   3      |5      6789  4678  |1      2468  247 

6 1247  24579  |1789  13789 1478 |24578 2348  2457

 

At that point, SE rating is 9.0.

 

This is a maximum as we know that cells r4c23 r6c8 are in “strong link”, what still does not know Sudoku Explainer.